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Bioanalytical calibration curves: proposal for statistical criteria1
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Received 13 December 1996; received in revised form 6 February 1997

Abstract

Curve fitting procedures for bioanalytical assays are based on classical linear least squares (LSE) theory. A
common procedure is to select among various models and weighting factors using the R2 as a goodness-of-fit
criterion. It is questionable whether R2 is the most appropriate criterion for model selection. This is compounded by
an often subjective removal of outliers. In this article, statistical curve fitting and diagnostic criteria are proposed. The
fitting procedure is a Box-Cox-type power transformation of the data. The optimal transformation is obtained as the
one that minimises the sum of squared deviations. Potential outlying standards are screened during the diagnostics
stage as those whose jackknife percent deviations exceed 20%. The main advantage of this method is that it is
objective and uniformly applicable across analytical techniques. Furthermore, the optimal transformation obtained in
this way is unique. The results are demonstrated by comparing the power model to the R2 approach through the
statistical analysis of 2094 analytical batches for 91 projects using various analytical techniques, namely GC, HPLC,
LCMS and GCMS. The results indicate that the power model is robust and that QC batch acceptance using the
power model is at least as good as the current method. These results hold true across all analytical techniques. It is
thus strongly suggested that curve fitting and standard outlier detection for bioanalytical assays should be based on
a power model and on jackknife percent deviations method with acceptable cut-off values. © 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The concentration of a drug present in a bio-
logical matrix sample is determined using extrac-

tion methods in analytical chemistry to obtain a
response value and then estimating the concentra-
tion as the abscissa value corresponding to the
response on a calibration curve. This curve has
concentration (denoted by X) on its abscissa and
the response (Y) (either peak height ratio or peak
area ratio) on the ordinate axis. The concentra-
tions and responses used to fit the calibration
curve are referred to as standards as they are
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derived from matrices with known concentrations.
In this article, the current procedure to select the
best calibration curve for a given set of standards
is discussed and a new method proposed.

Any curve-selection criteria involves evaluating
the appropriateness of a given curve by compar-
ing its goodness-of-fit relative to the rest of the
models under consideration. The simplest and
most commonly used goodness-of-fit criterion is
the multiple correlation coefficient, also called the
coefficient of determination, denoted by R2. The
handiness of this measure may overshadow its
real value which is as an indicator of the propor-
tion of variability in the response explained by the
linear regression. Its blind use could therefore
lead to wrong deductions about the functional
relationship between response and concentration.
Other properties of R2 serve to caution its use,
namely, that R2 increases with additional vari-
ables irrespective of their predictability value.
Further, since it depends on the range of X, a
large R2 does not imply a steep slope, neither does
it measure the appropriateness of the linear model
[1,2] and hence should not be used to compare
models if there are transformations on the Y
variable. Another problem with the current proce-
dure is that the search for the optimal curve is
limited to a small number and it is often difficult
to justify the use of the chosen algorithm for
negligible differences in R2. This is illustrated in
Fig. 1 which shows standard data points obtained
from a plasma sample of Selegeline in LCMS.

Superimposed on this data are the 8 typically used
regression types. As can be seen in this plot, all
the regressions seem to fit equally well (in terms of
R2). However, it is not clear from the plot which
regression to use, neither does the R2 help since
all the values are greater than 0.97 with negligible
differences between quite a few of them. Most
calibration curves using the current method have,
to some extent, this ambiguity of regression type.
This problem is further stressed by drug regula-
tory agencies who require that the chosen al-
gorithm be justified if different from the simplest
and, especially, that weighting factors be justified
[3].

In this paper an objective procedure for select-
ing transformations that addresses the above is-
sues is presented. This procedure is based on the
class of Box-Cox power transformations using the
minimum sum of squared deviations to choose the
optimal transformation. The proposed procedure
is compared to the current method through an
analysis of over 2000 datasets.

2. Power transformation procedure

2.1. Background

Data transformation prior to performing a re-
gression analysis is a common practice in statisti-
cal analysis. Indeed, some statistical software
packages include some form of routine data trans-
formation in an exploratory/data-descriptive
module. The most common objective for transfor-
mation is usually to meet the requirements of
classical linear regression, e.g. to stabilize the
error variance and normalize the error distribu-
tion [4,5]. In bioanalytical assays, it is believed
that the variance of the ratio of peak heights
increases with increasing drug concentration.
However, the variance weighting function is not
known. The purpose of this study is to present an
objective statistically valid regression fitting pro-
cedure that implicitly fits the proper variance
weighting function.

Given a number of standards, n (usually 8 or
10) with responses Y1, Y2,…, Yn and concentra-
tions X1, X2,…, Xn, the typical statistical data
transformation problem has three components:

Fig. 1. An illustration of the ambiguity of R2 on a selection
criteria of a regression model from the currently used set of 8
regressions.
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� a model linking the transformed response to
the transformed concentration,

� a set of transformations from which to choose,
� a goodness-of-fit function (to discriminate be-

tween transformations).
A good example is Breiman and Friedman’s [6]
alternating conditional expectations (ACE)
method. Here, the model equation is given by

u(yi)=f(xi)+ei

for transformations u and f that may be differ-
ent. The set of transformations is not fixed but is
determined dynamically by iterative alternating
conditional expectations. The goodness-of-fit
criterion is the scaled residual sum of squares.

The method proposed in this article is a gener-
alized version of the Box-Cox transformations [6]
and is similar to ACE in the model equation and
also the goodness-of-fit criterion function. In Sec-
tion 2.2, the power model is presented in greater
detail.

2.2. The power transformation

The power transformation is defined as:

y (l)=Í
Ã

Ã

Á

Ä

yl−1
ly; l−1,

y; logy,

if l"0

if l=0

(1)

where y; is the geometric mean and l is the power
value. The model linking response (Y) and con-
centration (X) is a simple linear regression be-
tween the power transformed X and Y and is
given by

y (l)
i =m+ax (l)

i +ei (2)

The residual sum of squares (SSR) from the
above regression is given by

SSR(l)=% (y (l)
i −m−ax (l)

i )2 (3)

The optimal power transformation lopt is deter-
mined empirically as the value of l which min-
imises SSR, the residual sum of squares. Since
minimising SSR(l) is equivalent to maximising

the likelihood function [1,5], the power obtained
will be doubly optimal in that it will be both the
least squares estimate as well as the maximum
likelihood estimate of the true power. Once the
optimal power is determined, possible quadrature
is accommodated by allowing a quadratic term to
be added to model Eq. (2). The steps involved in
the empirical determination of the optimal power
transformation are described below.

2.3. Algorithm A: The power cur6e fitting
algorithm

Step 1: To start, a power search range and
precision of the power transformation is selected.
The power range is unbounded and could be any
set of real numbers. The power precision is also
set at this stage, usually linked to the number of
iterations.

Step 2: Given a set of concentrations and re-
sponses and for each l in the search range, the
following procedure is followed:
� transform the response and concentration ac-

cording to Eq. (1),
� fit a linear regression between the transformed

response and transformed concentration (Eq.
(2)),

� obtain SSR(l) (Eq. (3)).
Step 3: From the whole set of SSR(l) values,

the optimal power transformation, l is the power
value at which SSR(l) is minimised.

Step 4: Using the optimal power value, a
quadratic term in the transformed X is then added
to the model and retained if statistically signifi-
cant at a level 0.10.

This procedure is illustrated in Figs. 2–4, all of
which are based on the same data as that in Fig.
1 and were chosen to illustrate the whole power
fitting algorithm including the accommodation of
significant quadrature. Fig. 2 illustrates fitted re-
gressions for some of the powers in the search
range, each with its corresponding SSR. Fig. 3
illustrates a typical profile of SSR as a function of
the powers and demonstrates that the optimal
value is unique. Fig. 4(a) is an illustration of the
linear regression curve corresponding to the opti-
mal power (−0.461) as well as that chosen by the
current method (Wagner) and their corresponding
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Fig. 2. An example of the curves in the power search range of
the power curve finding algorithm and their corresponding
scaled residual sum of residuals. The search range is unre-
stricted. The residuals are scaled in order to be comparable.

Fig. 4. (a) Comparison of the selected curves using the power
model with a simple linear regression and using the current
method. (b) Comparison of the selected curves using the power
model with a quadratic regression and using the current
method.

R2. From this curve, the power model seems to
miss the apparent curvature in the data. A
quadratic term is added and the improved fit is
shown in Fig. 4(b). The objectivity of the power
method is thus illustrated as well as the unique-
ness of choice of the optimal transformation.
Once the optimal power is determined, the next
step is to screen for potential outlying standards.
In Section 2.4, the proposed outlier detection
method is described.

2.4. The 20-20 jackknife percent de6iation rule

The jackknife percent deviation of a given stan-
dard is defined as the percent deviation of the

standard from the regression line that is fit exclud-
ing it. Jackknifing is a useful tool in detecting
points that may have undue influence in a particu-
lar fit but which would not show up as outliers
[2]. The proposed jackknife percent deviation rule
is defined as follows. To start, the jackknife per-
cent deviation of every standard is calculated.
Based on these values, a standard is considered an
outlier if it has the highest absolute percent devia-
tion greater than 20%. If an outlier exists and if
the total number of outliers is less than 20% of
the total number of standards, then the standard
is excluded from the analysis and the fitting proce-
dure in algorithm A is repeated. Otherwise, the
line is cross-validated using the quality control
(QC) samples. Assessing the QC fits is done using
the current 4/6: 20-15-10 rule which is described in
Appendix A.

Fig. 3. A typical profile of the sum of searched residuals over
the search range. Because of the strict concavity of the func-
tion, the optimal power is unique.
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Thus the power model consists of four steps:
power transformation, linear or quadratic regres-
sion, outlier detection and cross-validation using
QCs. This model will be compared to the current
method through data from real studies as de-
scribed in Section 3.

3. Data analysis

Given X=concentration and Y=response, the
current set of curves from which a calibration
curve is chosen are:

Linear: y=m+b1x+o(0, s2)

Linear, weighted 1/x : y=m+b1x+o(0, s2x)

Linear, weighted 1/x2: y=m+b1x+o(0, s2x2)

Quadratic: y=m+b1x+b2x2+o(0, s2)

Quadratic, weighted 1/x2: y

=m+b1x+b2x2+o(0, s2x2)

Quadratic, weighted 1/x2: y

=m+b1x+b2x2+o(0, s2x2)

Log− log: logy=m+b1 logx+o(0, s2)

Wagner: logy=m+b1 logx+b2(logx)2+o(0, s2)
(4)

The power model was used to calibrate the
standard curves from 2094 analytical batches of
data from 91 projects using various analytical
techniques namely GC, LC, GCMS, LCMS. The
current method of selecting a regression type from
the above set according to the maximum R2 value
was also used. The performance of the power
model was compared to the current method
through concordance tables of run acceptance and
outlier rejection rates. The comparison results can
be found in Tables 1–3 and in Figs. 5 and 6.

4. Results

4.1. Acceptance rates

All the R2 values reported have been adjusted
for the number of parameters. In all the tables

Table 1
Comparison of QC-based run acceptance rates in the power
model and in the current method

Current method

TotalRejectAccept

1632Power model Accept 1576 56
462Reject 55 407

20944631631Total

Concordance=95%, discordance=5%.

and figures, results from the power model are
labelled ‘‘power’’ while those from the current
approach are labelled ‘‘current’’. P and L indicate
outlier points detected by the power model and
the current method, respectively. The overall run
acceptance results are shown in Table 1. The
results show an overall batch acceptance concor-
dance of around 95%. Concordance is demon-
strated by standard data from levonorgestrel in
GCMS in which the selected curves from both
methods were rejected (Fig. 5) or accepted (Fig. 6)
during the QC assessment stage. The 5% discor-

Table 2
Run acceptance rates comparison stratified by regression type

Current method

TotalRejectAccept

Linear
Accept 1432Power model 52 1484

36749Reject 416
1481 419Total 1900

Quadratic
Accept 0 14Power model 14
Reject 1 7 8
Total 15 7 22

Wagner
1344130AcceptPower model

Reject 5 33 38
Total 135 37 172

Concordance=95%, discordance=5%.
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Table 3
Run acceptance rates comparison stratified be analytical tech-
nique

Current method

Accept Reject Total

GCa

258 11 269AcceptPower model
14 109 123Reject

Total 272 120 392

GCMSb

21 434Power model Accept 413
14312518Reject

Total 431 146 577

HPLCc

576 59014AcceptPower model
61 72Reject 11

662Total 75587

LCMSd

328 10Power model Accept 338
12411212Reject

340 122 462Total

a Concordance=94%, discordance=6%; b concordance=
93%, discordance=7%; c concordance=96%, discordance=
4%; d concordance=95%, discordance=5%.

Fig. 6. Concordance between the power model (optimal
power=0.058) and the current method (quadratic weigthed
1/X) in which both methods accepted the curve. QCA, QCB,
QCC correspond to the low, medium and high concentration
QC samples respectively. The symbol x marks the QC value on
the graph while L and P mark outliers detected by the current
method and by the power method, respectively.

may also be due to minor differences in the QC
percent deviations as is shown in Fig. 7 (standard
data from carboxyterfenadine in GC) and Fig. 8
(equilin in GCMS).

These concordance–discordance values are
maintained whether the results are stratified by
regression type (Table 2) or analytical technique
(Table 3).

dance may be due to the imprecision in the cur-
rent method of curve selection that was demon-
strated in the simulation study reported in [6]. It

Fig. 5. Concordance between the power model (optimal
power=0.132) and the current method (quadratic weigthed
1/X) in which both methods rejected the curve. QCA, QCB,
QCC correspond to the low, medium and high concentration
QC samples respectively. The symbol x marks the QC value on
the graph while L and P mark outliers detected by the current
method and by the power method, respectively.

Fig. 7. Discordance due to minor differences in QC percent
deviation. QCA, QCB, QCC correspond to the low, medium
and high concentration QC samples respectively. The symbol x
marks the QC value on the graph while L and P mark outliers
detected by the current method and by the power method,
respectively.
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Fig. 8. Discordance due to minor differences in QC percent
deviation. QCA, QCB, QCC correspond to the low, medium
and high concentration QC samples respectively. The symbol x
marks the QC value on the graph while L and P mark outliers
detected by the current method and by the power method,
respectively.

� the power transformation range includes the
current set of regression models;

� a unique optimal transformation is obtained,
which eliminates the problem of trying to jus-
tify the choice between two equally optimal
curves, as frequently happens in the current
procedure;

� valid quadrature is accommodated by retaining
a quadratic term in the model if it improves the
fit over the linear either through a statistical
significance test or by comparing the back-cal-
culated standards for the two models;

� it is highly specific, as was observed in the
simulations;

� it is simple to understand and implement.
The main advantage of the proposed 20-20

jackknife percent deviation rule for outlier detec-
tion is that it is objective, statistically valid and is
applied uniformly. It resulted in slightly fewer
outliers than the current method. Using the power
model and the outlier detection rule, results from
extensive data analysis demonstrated a 95% con-
cordance between the power model and the cur-
rent procedure. The discordance may be due to a
5% error rate resulting from a reduced precision
in curve selection using the current procedure.

5.2. Conclusion

In general, regression fitting is considered a
solved statistical problem. The power model pre-
sented in this article is one of the methods that
has been suggested by statisticians for fitting the
correct variance weight. It is well known and
widely used by data analysts as is the jackknife
procedure for outliers. Simulation results showed
that the power model is highly specific in that the
optimal power thus obtained is an accurate esti-
mate of the underlying true variance weighting
factor. Experimental data analysis results showed
that using the proposed criteria, calibration curve
fitting can be made more scientifically valid and
objective without increasing production costs (the
latter observed from the 93% concordance be-
tween the proposed criteria and the current proce-
dure). On the strength of these results, it is
recommended that: (1) the power model be used
as a scientifically valid procedure for fitting cali-

4.2. Outlier detection

The 20-20 jackknife percent deviation allowed
for a slightly lower outlier rate of 5.7% in the
power model compared to the current rate of
5.9%. The outlier rate is the proportion of points
rejected as outliers in the whole dataset.

5. Discussion

5.1. Power model

The power model discussed in this article was
proposed by Box and Cox [5] for the purpose of
linearising the mean function and stabilising the
error variance. It was intended for data analysis
situations such as that presented by the standard
curve problem. It generalises the weighting
scheme that is currently used to fit calibration
curves. Previous simulations [6] and experimental
data analysis reported in this article demonstrated
additional advantages of the power transforma-
tion method over the current method, which are
that:
� it is based on an objective choice of transfor-

mations;
� the range of transformations from which to

choose is continuous and unbounded;
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bration curves; and (2) the jackknife percent devi-
ation with acceptable cut-off values be used for
outlier detection.
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Appendix A. Cross validation

A.1. QC assessment rule

This rule requires that the quality control sam-
ples at three concentration levels (low, medium
and high) be assayed in duplicate in each run. For
the run to be accepted, at least 4 out of the 6
samples should have estimated concentrations
that are within 20% (for the low concentration
level), 15% (medium level) and 10% (high level) of
their known values and that at least one of the
two values at each concentration level must be
within these limits. This rule is criticized in [7,8].

A.2. Back calculation of concentrations

In order to back calculate the concentration,
i.e. estimate the corresponding concentration
given a response, note that in a simple linear
regression, the prediction of a new value depends
on the data implicitly through the parameters.
Thus, given (X1, Y1), (X2, Y2),…, (Xn, Yn), and the
fitted regression

Yi=m+bXi (A1)

then the back calculated new concentration Xnew

given a new response Ynew is

Xnew/{(X1, Y1), (X2, Y2),…, (Xn, Yn), Ynew}

= (Ynew−m)/b (A2)

Using this logic, the back calculation in the power
transformation case of a new value given a new
response is given by

u(Xnew)/{(X1, Y1), (X2, Y2),…, (Xn, Yn), Ynew}

= (u(Ynew)−m)/b (7)

where

u(Ynew)=Í
Ã

Ã

Á

Ä

Y (lopt)
new −1

l
�5

n

i=1

Yi
�(l−1)/n,

�5
n

i=1

Yi
�1/n

logYnew,

if lopt"0

if lopt=0
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